Gas-Phase Reactions of Tantalum Carbide Cluster Ions with Deuterium and Small Hydrocarbons

Carolyn J. Cassady[†] and Stephen W. McElvany^{*}

Contribution from the Chemistry Division, Code 6111, Naval Research Laboratory, Washington, D.C. 20375-5000. Received November 1, 1989

Abstract: The gas-phase ion/molecule reactions of tantalum carbide cluster ions $(TaC_y^+, y = 0-14)$ with D₂, CH₄, C₂H₄, and C₂H₆ have been investigated by Fourier transform mass spectrometry. Product branching ratios and reaction rate constants are reported. The addition of tantalum dramatically alters the reactivity relative to that of the corresponding carbon clusters (C_y^+) , leading to the conclusion that the TaC_y⁺ reactions are initiated on the metal. In addition, the extensive dehydrogenation and secondary reactivity that characterize the reactions of Ta⁺ with hydrocarbons are observed for TaC_y⁺. Experiments with isotopically labeled precursors were performed, as well as low-energy collision-induced dissociation studies of major reaction products. The implications of these studies with respect to TaC_{y}^{+} structures and reaction mechanisms are discussed. Total scrambling of the labeled carbon occurred during the TaC_{y}^{+} reactions with ¹³CH₄. This indicates that the mechanism involves incorporation of the methane carbon into the C_{y} ligand(s) prior to elimination of a neutral and suggests the possibility of cyclic TaC_{ν}^{+} structures. Evidence is also presented for two structural isomers of TaC_{7}^{+} , TaC_{8}^{+} , and TaC_{9}^{+} .

The gas-phase chemistries of carbon cluster ions¹ and transition-metal-containing ions² have been the subjects of extensive research in the past few years. Studies of the structures and reactivities of these species are of relevance to several areas of science, including combustion processes, astrochemistry, catalysis, and surface chemistry. The study of gas-phase metal carbide ions is a logical extension of this work. Metal carbides play important roles in materials science and electronics due to their great strengths and high melting points.³ In addition, they may be intermediates in various organometallic processes, including the Fischer-Tropsch synthesis of hydrocarbons,⁴ olefin metathesis,⁵ and acetylide catalysis processes.6

Numerous Knudsen effusion mass spectrometry studies over the past three decades have involved metal carbide species produced at high temperatures from mixtures of metal powders and graphite.⁷⁻¹⁰ These studies have been limited to relatively small metal carbides, $M_x C_y^+$ (x = 1 and 2, y = 1-8). Similar $M_x C_y^+$ distributions have been obtained by secondary-ion mass spectrometry (SIMS) on bulk metal carbides.¹¹ Larger monometal carbide ions, MC_v^+ (v > 40), have been produced by laser vaporization of metal/graphite samples in a high-pressure supersonic expansion cluster source.12

Recently, we reported that tungsten carbide and tantalum carbide cluster ions can be generated by direct laser vaporization (DLV) of metal powder/carbon mixtures in a Fourier transform mass spectrometer (FTMS).^{13,14} Tantalum has been the focus of detailed investigation because it is both monoisotopic, which facilitates MS/MS studies, and relatively high in mass $(m/z \ 181)$, making the TaC_{ν}^{+} higher in mass than the abundant low-mass carbon cluster ions $(C_y^+, y < 15)$ that are also produced by DLV. DLV of tantalum/carbon yields primarily Ta⁺. In addition, a series of tantalum carbide ions, $Ta_xC_y^+$ (x = 1-11, y = 1-26), are formed, with TaC_2^+ and TaC_4^+ dominating. The TaC_y^+ distribution from DLV is comparable to that seen in Knudsen effusion mass spectrometry experiments with other early transition metals;⁷⁻¹⁰ however, the ratio of carbon to metal is much larger with DLV. The similarity with Knudsen cell experiments, as well as the results of DLV experiments with isotopically labeled precursors,¹³ suggests that the ions produced by DLV originate from recombination reactions in the laser-generated plasma. The low-energy collision-induced dissociation (CID) of mass-selected $Ta_{x}C_{y}^{+}$ was also discussed in our recent report.¹³

The structures of MC_y species are an intriguing aspect of gas-phase metal carbide chemistry. Although exact structures are unknown, several possibilities are given below with TaC_7^+ as an example. These depictions illustrate the arrangement of atoms

and not the nature of bonding. Multiple bonding undoubtedly exists in these species since organometallic complexes of Ta frequently contain double or triple Ta—C bonds¹⁵ and gas-phase carbon clusters contain C=C bonds.¹⁶ Knudsen cell studies have inferred MC_y structures on the basis of the consistency between assumed structures and thermodynamic data obtained from

(1) (a) Zhang, Q. L.; O'Brien, S. C.; Heath, J. R.; Liu, Y.; Curl, R. F.; Kroto, H. W.; Smalley, R. E. J. Phys. Chem. 1986, 90, 525-8. (b) Heath, J. R.; Zhang, Q.; O'Brien, S. C.; Curl, R. F.; Kroto, H. W.; Smalley, R. E. J. Am. Chem. Soc. 1987, 109, 359-63. (c) Cox, D. M.; Reichmann, K. C.; Kaldor, A. J. Chem. Phys. 1988, 88, 1588-97. (d) Bloomfield, L. A.; Geusic, M. E.; Freeman, R. R.; Brown, W. L. Chem. Phys. Lett. 1985, 121, 33-7. (e) Radi, P. P.; Bunn, T. L.; Kemper, P. R.; Molchan, M. E.; Bowers, M. T. J. Chem. Phys. 1988, 88, 2809-14. (f) McElvany, S. W.; Creasy, W. R.; O'Keefe, A. J. Chem. Phys. 1986, 85, 632-3. (g) Bohme, D. K.; Włodek, S.; Williams, L.; Forte, L.; Fox, A. J. Chem. Phys. 1987, 87, 6934-8. (2) (a) Buckner, S. W.; Freiser, B. S. Polyhedron 1988, 7, 1583-603. (b) Allison, J.; Mavridis, A.; Harrison, J. F. Polyhedron 1988, 7, 1583-603. (b) Allison, J.; Mavridis, A.; Harrison, J. F. Polyhedron 1988, 7, 1573-81. (3) (a) Storms, E. K. In Refractory Materials; Margrave, J. L., Ed.; Academic Press: New York, 1967; Vol. 2. (b) Silberbach, H.; Merz, H. Z. Phys. B 1985, 59, 143-9. (c) Gesheva, K.; Vlakhov, E. Mater. Lett. 1987, 5, 276-9.

5, 276-9.

(4) (a) Anderson, R. B.; Köbel, H.; Ralek, M. The Fischer-Tropsch Synthesis; Academic Press: New York, 1984. (b) Brady, R. C., III; Pettit, R. J. Am. Chem. Soc. 1981, 103, 1287-9. (c) Rofer-DePoorter, C. K. Chem. Rev. 1981, 81, 447-74

(5) (a) Ivin, K. J. Olefin Metathesis; Academic Press: New York, 1983.
(b) Calderon, N.; Lawrence, J. P.; Ofstead, E. A. Adv. Organomet. Chem. 1979, 17, 449-92.
(c) Grubbs, R. H. Comp. Organomet. Chem. 1982, 8, 499-551.

(6) Parshall, G. W. Homogeneous Catalysis; Wiley-Interscience: New York, 1980; pp 151-2.

(7) (a) Gupta, S. K.; Kingcade, J. E., Jr.; Gingerich, K. A. Adv. Mass Spectrom. 1980, 8, 445-51. (b) Gingerich, K. A. Current Topics in Materials Science; Kaldis, E., Ed.; North-Holland: Amsterdam, 1980; Vol. 6, pp 347-462

(8) Pelino, M.; Haque, R.; Bencivenni, L.; Gingerich, K. A. J. Chem. Phys. 1988, 88, 6534-9.

(9) (a) Gingerich, K. A.; Pelino, M.; Haque, R. High Temp. Sci. 1981,

(14, 137-51. (b) Gingerich, K. A.; Henno, H., Haque, R.; Pelino, M. J. Chem. Soc., Faraday Trans. 1 1982, 78, 341-6.
 (10) Kingcade, J. E., Jr.; Cocke, D. L.; Gingerich, K. A. High Temp. Sci. 1983, 16, 89-109.

1983, 16, 89-109.
(11) (a) Leleyter, M.; Joyes, P. Surf. Sci. 1985, 156, 800-13. (b) Leleyter, M.; Ortoli, S.; Joyes, P. Surf. Sci. 1981, 106, 293-300.
(12) (a) Heath, J. R.; O'Brien, S. C.; Zhang, Q.; Liu, Y.; Curl, R. F.; Kroto, H. W.; Tittel, F. K.; Smalley, R. E. J. Am. Chem. Soc. 1985, 107, 7779-80. (b) Weiss, F. D.; Elkind, J. L.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. J. Am. Chem. Soc. 1985, 107, 1079-80. (c) Weiss, F. D.; Elkind, J. L.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. J. Am. Chem. Soc. 1985, 107, 1079-80. (c) Weiss, F. D.; Elkind, J. L.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. J. Am. Chem. Soc. 1985, 107, 1079-80. (c) Weiss, F. D.; Elkind, J. L.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. J. Am. Chem. Soc. 1985, 107, 1099-80. (c) Weiss, F. D.; Elkind, J. L.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. J. Am. Chem. Soc. 1985, 107, 1099-80. (c) Weiss, F. D.; Elkind, J. L.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. J. Am. Chem. Soc. 1985, 107, 1099-80. (c) Weiss, F. D.; Elkind, J. L.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. J. Am. Chem. Soc. 1985, 107, 1099-80. (c) Weiss, F. D.; Elkind, J. L.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. J. Am. Chem. Soc. 1985, 107, 1090-94. 2057-62. (l4) McElvany, S. W.; Cassady, C. J. J. Phys. Chem. 1990, 94, 2057-62. (l4) McElvany, S. W.; Ross, M. M.; Baronavski, A. P. Anal. Inst. 1988, 17. 23-40. 17. 23-40.

(15) (a) Schrock, R. R. J. Am. Chem. Soc. 1976, 98, 5399-400. (b)
Schrock, R. R.; Sharp, P. R. J. Am. Chem. Soc. 1978, 100, 2389-98. (c)
Schrock, R. R. Acc. Chem. Res. 1979, 12, 98.
(16) McElvany, S. W.; Dunlap, B. I.; O'Keefe, A. J. Chem. Phys. 1987, 86, 715-25.

*NRC/NRL Postdoctoral Research Associate. Current addresss: Department of Chemistry, Miami University, Oxford, OH 45056.

This article not subject to U.S. Copyright. Published 1990 by the American Chemical Society

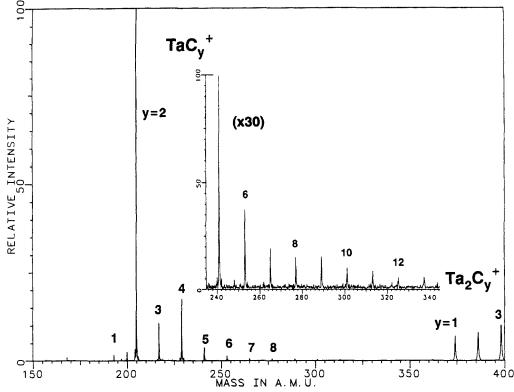
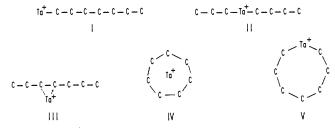



Figure 1. Direct laser vaporization mass spectrum of a tantalum powder/graphite pellet producing TaC_{y}^{+} ions (y values are listed above the peaks). Ta⁺ was ejected during the ionization event.

equilibrium measurements as a function of temperature.⁷⁻¹⁰ This work has included larger monometal carbides (e.g., YC_{y} , ⁸ LaC_y, ⁹ and CeC_y, ¹⁰ $y \le 8$, 8, and 6, respectively), but TaC_y species have not been investigated. These studies suggest that MC, consist of linear (or possibly bent) carbon chains with the metal attached at one end, that is, structure I for Ta⁺. In addition, small

gas-phase C_y^+ ($y \le 9$) formed by DLV exist as linear carbon chains, ^{16–18} and metallocumulene species are known to exist in solution.¹⁹ The Knudsen cell work also suggests that multiple ligand structures (II) are only important for MC₄, which may have a dicarbide structure (C_2-M-C_2) , and that metal attachment at an internal position on the carbon chain (III) is not a preferred configuration.⁷⁻¹⁰ Cyclic structures were not appraised in the Knudsen cell work; however, the current ion/molecule reaction studies and our previous low-energy CID investigations of TaC_{y}^{+13} provide evidence for their existence. Metallocene structures (IV) are plausible since laser vaporization produces C_{y}^{+} with cyclic structures for $y \ge 10$ and both cyclic and linear structures for y = 7-9.¹⁸ In addition, C_{10} loss is a major low-energy CID pathway for TaC_y⁺ ($y \ge 10$) and may indicate the presence of an intact cyclic C₁₀ ligand.¹³ Metallacycle structures (V) are another possibility, particularly for $y \ge 5$ because cyclic C_y⁺ are known for $y \ge 7^{16-18}$ and Ta is roughly equal in size to a C=C unit. Also, metallacycle Ta compounds have been observed in solution.²⁰

This paper presents the first studies on the gas-phase reactivities of metal carbide cluster ions, TaC_{y}^{+} (y = 1-14), with several small molecules (D₂, CH₄, C₂H₄, C₂H₆). Tantalum has a rich organometallic chemistry in solution, particularly with regard to the formation of metal-alkylidene and -alkylidyne species.¹⁵ The current work indicates that gas-phase organotantalum chemistry is equally complex. The chemistries of the bare metal ion, Ta^{+,21} and the corresponding carbon clusters, $C_{y}^{+, 16, 17}$ are compared to that of TaC_{y}^{+} . Isotopically labeled reactants are used to gain insight on reaction mechanisms and TaC_{ν}^{+} structures.

Experimental Section

All experiments were performed with a Fourier transform ion cyclotron resonance mass spectrometer,²² which has previously been described in detail.¹⁸ The mass spectrometer consists of a Nicolet FTMS/1000 data system and a Nicolet 3-T superconducting magnet. The trapping plates of the 1 in. × 1 in. × 2 in. (z-axis) rectangular trapping cell are composed of 90% transparent nickel mesh. This allowed the frequency-doubled output of a Quanta-Ray DCR-2 Nd:YAG laser (532 nm, 1-5 mJ/pulse) to traverse the cell and vaporize the sample that was placed on a solids probe and inserted flush with one of the trapping plates.

 TaC_{ν}^{+} were formed by laser vaporization of pellets containing tantalum powder (325 mesh, Johnston Matthey) mixed with either graphite (325 mesh, Alfa Inorganics), amorphous 12 C (99.9% Isotec Inc.) or amorphous 13 C (>99.0%, Isotec). A molar ratio of ~1 Ta to 4 C was typically employed. Production of TaC_y^+ from Ta/carbon pellets has been discussed previously.¹³ A representative mass spectrum of TaC_y^+ obtained from Ta/graphite is shown in Figure 1. TaC_{y}^{+} generated by DLV may have a wide range of internal energies. However, aside from instances noted in the text, appreciable pressure effects (i.e., collisional cooling) during the reactions were not observed, suggesting that the ions are predominantly in their ground state.

 ⁽¹⁷⁾ McElvany, S. W. J. Chem. Phys. 1988, 89, 2063-75.
 (18) Parent, D. C.; McElvany, S. W. J. Am. Chem. Soc. 1989, 111, 2393-401.

 ^{(19) (}a) Mayr, A.; Schaefer, K. C.; Huang, E. Y. J. Am. Chem. Soc. 1984, 106, 1517-8. (b) Birdwhistell, K. R.; Templeton, J. L. Organometallics 1985, 4, 2062-4. (c) Höhn, A.; Otto, H.; Dziallas, M.; Werner, H. J. Chem. Soc. Chem. Commun. 1987, 852-4.

^{(20) (}a) Rocklage, S. M.; Fellmann, J. D.; Rupprecht, G. A.; Messerle,
L. W.; Schrock, R. R. J. Am. Chem. Soc. 1981, 103, 1440-7. (b) Wallace,
K. C.; Dewan, J. C.; Schrock, R. R. Organometallics 1986, 5, 2162-4.
(21) Buckner, S. W.; MacMahon, T. J.; Byrd, G. D.; Freiser, B. S. Inorg.
Chem. 1989, 28, 3511-8.

⁽²²⁾ A recent review of FTMS appears in Fourier Transform Mass Spectrometry: Evolution, Innovation, and Applications; Buchanan, M. V., Ed.; ACS Symposium Series 359; American Chemical Society: Washington, DC, 1987.

Table I. Branching Ratios and Normalized Rate Constants for the Primary Reactions of TaC_v^+ and D_2

							ch	uster size	e (y)						
products	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$TaC_{\nu}D_{2}^{+}$	NR ⁴				NR ^a				1.00	1.00	1.00	1.00	1.00	1.00	1.00
$TaC_{\nu}D_{2}^{+}$ $TaC_{\nu}D^{+} + D$ $TaC_{\nu-2}^{+} + C_{2}D_{2}$		1.00		1.00											
$TaC_{\nu-2}^{+} + C_2D_2$			1.00			1.00	1.00	1.00							
normalized rate const (k_p)	<0.001	1.00%	0.30	0.048	<0.001	0.0015°	0.26	0.069°	0.23 ^d	0.069°	0.66	0.013	0.0018 ^c	0.0041°	0.015°

^aNR indicates that this ion did not undergo any reactions. ^bThe absolute rate constant for the reaction of TaC⁺ was estimated to be 5.3×10^{-10} cm³/s. See the text for explanation. ^dRate constant for the reactive fraction of TaCg⁺ as discussed in the text.

Following TaC_{ν}^{+} formation, ions corresponding to a specific cluster size were isolated in the FTMS cell with resonance frequency ejection techniques.²³ The mass-selected ions were allowed to react with a static pressure of reactant gas maintained at pressures up to 1×10^{-6} Torr, with typical operating pressures of $(1-5) \times 10^{-7}$ Torr. For H/D exchange reactions,²⁴ the reactant ions were formed by reactions of TaC_{y}^{+} with a hydrocarbon reagent gas introduced into the vacuum chamber via a General Valve Corp. Series 9 pulsed solenoid valve.25 The pulse pressure reached a maximum of 10⁻⁵ Torr and was pumped away by an Edwards Diffstak Series 160 diffusion pump within \sim 400 ms. In cases noted in the text, the pulsed valve was also used to admit xenon buffer gas. Collision-induced dissociation (CID) experiments²⁶ employed a static pressure of xenon collision gas on the order of $(1-5) \times 10^{-6}$ Torr. The collision energy was varied from 0 to 100 eV (laboratory).

The primary product ion branching ratios listed in Tables I-VII are reproducible to $\pm 10\%$. Rate constants were determined by observing the pseudo-first-order change in reactant ion intensity as a function of time at a constant pressure. All reactions were studied to greater than 80% completion except for cases of prohibitively slow reaction or low reactant ion intensity. Except as noted in the text, all first-order decay plots were linear, suggesting the predominance of ground-state reactant ions. Pressures were measured with a calibrated ion gauge²⁷ and corrected for reactant gas ionization efficiency.²⁸ Errors in the pressure calibration factor and from other sources may render the absolute rate constants in error by as much as a factor of 2-3. Differences in relative rate constants should be significant, however, since they were measured under similar conditions.

Results and Discussion

Deuterium Reactions. Reaction Products and Rates. Primary products, branching ratios, and rate constants for the ion/molecule reactions of TaC_{ν}^{+} with D_2 are listed in Table I. Deuterium was used in these studies, rather than H₂, to avoid nominal mass overlap between potential products and reactant ions containing naturally occurring ¹³C (e.g., TaC_yH^+ and $TaC_{y-1}^{13}C^+$). TaC_y undergo reactions 1-3 with D_2 . In contrast, the pure carbon cluster

$$TaC_{y}^{+} + D_{2} \xrightarrow{} TaC_{y}D_{2}^{+} \qquad y = 8-14$$
(1)

$$\rightarrow TaC_y D^+ + D \qquad y = 1, 3 \tag{2}$$

$$L \to TaC_{y-2}^{+} + C_2D_2 \qquad y = 2, \ 5-7 \qquad (3)$$

ions, C_y^+ (y = 3-9), react exclusively by D elimination (reaction 4) with the exception of C_6^+ and C_8^+ , which also eliminate C_3

$$C_{y}^{+} + D_{2} \xrightarrow{+} C_{y}D^{+} + D \qquad y = 3-9$$
 (4)
 $- C_{y-3}D_{2}^{+} + C_{3} \qquad y = 6, 8$ (5)

(reaction 5) at 15% and 25%, respectively.¹⁶ Several studies suggest that the C_{ν}^{+} reactions occur at carbone sites on the ends of linear chains (VI).¹⁶⁻¹⁸ The dramatic difference in TaC_{ν}^{+} and

(23) Comisarow, M. B.; Grassi, V.; Parisod, G. Chem. Phys. Lett. 1978, 57, 413-6.

(24) (a) Jacobson, D. B.; Freiser, B. S. J. Am. Chem. Soc. 1985, 107, 72-80. (b) Cassady, C. J.; Freiser, B. S. J. Am. Chem. Soc. 1985, 107, 1566-73.

 C_{ν}^{+} reactivity with D_2 indicates that Ta is playing an active role in the TaC_{y}^{+} reactions. These processes presumably involve metal insertion into the D-D bond, resulting in the formation of intermediate VII. This may be followed by ligand rearrangement on Ta and elimination of neutral molecules or radicals.

Formation of the stable neutral C_2D_2 (reaction 3) is surprising because the reactions of Ta^+ with hydrocarbons involve almost exclusive dehydrogenation.²¹ The presence of this exothermic reaction for y = 2 and 5-7 indicates that $\Delta H_f(\text{TaC}_y^+)$ is at least 54 kcal/mol greater than $\Delta H_f(\text{TaC}_{y-2}^+)^{29}$ C_y⁺ do not undergo C_2D_2 loss, and this process is not expected to be exothermic since MNDO calculations indicate that for $y = 5-9 \Delta H_f(C_y^+)$ is only 29-42 kcal/mol greater than $\Delta H_f(C_{y-2}^+)$.¹⁶ The observation of reaction 3 for TaC_2^+ yields an upper limit of $D(Ta^+-C_2) < 145$ kcal/mol.29

 TaC^+ and TaC_3^+ react with D_2 in a manner similar to that of C_{ν}^{+} (y = 3-9), undergoing D elimination (reaction 2). In both cases the primary product ion reacts further with D_2 to form $TaC_{y}D_{2}^{+}$, reaction 6. An analogous process occurs for $C_{y}D^{+}(y)$

$$TaC_yD^+ + D_2 \rightarrow TaC_yD_2^+ + D \qquad y = 1, 3 \tag{6}$$

= 3, 4, 6, 8).¹⁶ Elimination of D may be the only exothermic pathway available to TaC⁺ and TaC₃⁺. For TaC⁺, loss of CD₂ to generate Ta⁺ is not exothermic if $D(Ta^+-C) > 78 \text{ kcal/mol.}^{29}$ This is almost certainly the case, since for the other group 5 metals $D(V^+-C) = 88 \pm 5 \text{ kcal/mol}^{30} \text{ and } D(Nb^+-C) > 138 \text{ kcal/mol}^{31}$ For TaC_3^+ , C_2D_2 elimination will only occur if the Ta^+ -C bond is at least 25 kcal/mol stronger than the Ta^+-C_3 bond.²⁹ While no absolute bond strengths are available for Ta^+-C_y , Knudsen cell studies involving other early transition metals have found that the M-C bond is weak relative to M-C₂ and M-C₃.⁷⁻¹⁰ Further evidence for a weak Ta⁺-C bond is seen in the DLV mass spectra of Ta/carbon mixtures (Figure 1), where TaC⁺ is formed in very low abundance relative to TaC_y⁺ (y = 2-4).¹³

The absence of TaD⁺ formation from Ta⁺ and D₂ indicates that $D(Ta^+-D) < 106 \text{ kcal/mol.}^{29}$ This is not surprising since no bare atomic metal ion is known to react exothermically with D₂. However, the nonreactivity of TaC_4^+ is unexpected, because this ion readily reacts with the other small molecules in this study. As discussed earlier, Knudsen cell studies suggest that MC₄ has a dicarbide structure (II) while other MC, species involve metal attachment at a linear carbon chain (I). In addition, Knudsen cell investigations of larger metal carbides $(YC_y, {}^8 LaC_y, {}^9 and CeC_y, {}^{10} y = 2-6)$ reveal that $\Delta H_f(MC_y)$ increases by 15-40 kcal/mol with the addition of each successive carbon. Only $\Delta H_{\rm f}({\rm MC_4})$, which is within ±4 kcal/mol of $\Delta H_{\rm f}({\rm MC_3})$, does not follow this trend; this is probably a result of MC_4 having a structure different from that of other MC_y . Thus, it is possible that TaC_4^+ has a dicarbide structure, $C_2^-Ta^+-C_2$, and cannot undergo reaction 2, which is endothermic if $\Delta H_f(TaC_4^+) - \Delta H_f(TaC_2^+) < 54 \text{ kcal/mol.}^{29}$

Larger TaC_v⁺ (y = 8-14) react with D₂ only through association reaction 1. For y = 9 and 11-14, these reactions are a factor of 10^2-10^3 slower than the Langevin collision rate³² of 1.1×10^{-9}

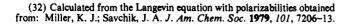
 ⁽²⁵⁾ Carlin, T. J.; Freiser, B. S. Anal. Chem. 1983, 55, 571-4.
 (26) Cody, R. B.; Freiser, B. S. Int. J. Mass Spectrom. Ion Phys. 1982,

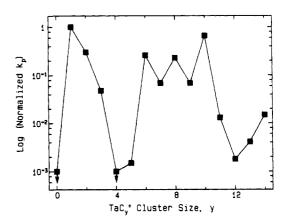
⁽²⁶⁾ COOY, R. B.; Freiser, B. S. 111. 5. 17405 Spectrum 21. (27) 41, 199-204. (27) The ion gauge was calibrated with the reaction $Kr^+ + CO_2 \rightarrow Kr + CO_2^+$, with rate constant information obtained from: Ikezoe, Y.; Matsuoka, S.; Takebe, M.; Viggiano, A. Gas Phase Ion-Molecule Reaction Rate Con-stants through 1986; Maruzen: Tokyo, 1987. (28) Bartmess, J. E.; Georgiadis, R. M. Vacuum 1983, 33, 149-53.

⁽²⁹⁾ Except as noted, supplementary thermochemical information was (2) Except as noted, supplementary incrincementar momation with a solution of from: Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.;
 Levin, R. D.; Mallard, W. G. J. Phys. Chem. Ref. Data 1988, 17 (Suppl. 1).
 (30) Aristov, N.; Armentrout, P. B. J. Am. Chem. Soc. 1984, 106, 4065–6.
 (31) Hettich, R. L.; Freiser, B. S. J. Am. Chem. Soc. 1987, 109, 3543–8.

Table II. Branching Ratios for the Low-Energy Collision-Induced Dissociation of TaC_yH₂⁺

		cluster size (y)														
products	1	2	3	4	5	6	7	8	9	10	11					
$TaC_{y}H^{+} + H$	0.42ª									0.10						
$TaC_{\mu}^{+} + H_{2}$			0.45		0.21					0.16						
$T_{a}C_{y-2}^{+} + C_{2}H_{2}$		Ь			0.59	1.00	0.74			0.12	0.38					
$TaC_{\mu}^{+} + C_4H_2$				Ь			0.26	1.00	1.00							
$TaC_{v=6}^{+} + C_6H_2$										0.52	0.62					
$TaC_{y^{+}} + H_{2}$ $TaC_{y-2}^{+} + C_{2}H_{2}$ $TaC_{y-4}^{+} + C_{4}H_{2}$ $TaC_{y-6}^{+} + C_{6}H_{2}$ $Ta^{+} + C_{y}H_{2}$	0.58	1.00	0.55	1.00	0.20					0.10						


^a Reported branching ratios were obtained with collision energies of 40–50 eV (laboratory). ^b This pathway is observed, producing Ta⁺ + C_yH₂.


cm³/s. These rates were measured at pressures of ~10⁻⁶ Torr, where the average time between collisions is ~28 ms. Therefore, it is possible that collisional stabilization plays a role in adduct formation for these ions. TaC₈⁺ and TaC₁₀⁺, however, react with $k_{obsd}/k_{Langevin}$ ratios of 0.3 and 0.1, respectively. Here, adduct formation is independent of pressure and occurs readily even at D₂ pressures of 2.2 × 10⁻⁷ Torr where the average time between collisions is 128 ms. These results suggest that stabilizing collisions with D₂ are not necessary for the formation and detection of TaC₈D₂⁺ and TaC₁₀D₂⁺. Therefore, these reactions may involve radiative association. Radiative association is also postulated in the reactions of C_y⁺ with HCN, ¹⁸ C₂H₂, and C₂H₄.¹⁷

In addition to adduct formation, minor amounts (<10%) of lower mass products were periodically observed for TaC_{ν}^{+} (y = 8, 9, 11). The abundances of these species decreased with increasing pressure, including a pulsed xenon pressure applied prior to reaction. Similar phenomena were seen in the reactions with hydrocarbons. CID studies revealed that these ions are also produced as the lowest energy fragmentation pathways of the adducts. Thus, a fraction of TaC_{ν}^{+} contains sufficient excess internal energy that when not removed by collisions, results in dissociation of the adduct. Low-energy CID studies of $TaC_{y}H_{2}^{+}$ produced by reactions with D_2 , CH_4 , or C_2H_4 are summarized in Table II. The method of $TaC_{y}H_{2}^{+}$ generation had only negligible effects on the CID data, suggesting that $TaC_{y}H_{2}^{+}$ produced from different precursors have the same structures. Interestingly, $TaC_{y}H_{2}^{+}$ dissociate to eliminate $C_{y}H_{2}$ with even y, while the major TaC_{y}^{+} CID pathways involve C_{3} , C_{5} , and C_{10} elimination.¹³ These differences may result from the energetics of the dissociation reactions because $C_y D_2$, with even y, have considerably lower heats of formation²⁹ (i.e., are more stable) than C_{ν} .

At longer reaction times, the primary product ions from reaction 1 that contain an odd number of carbons undergo secondary association reactions with D_2 . For y = 9, 11, and 13, $TaC_yD_8^+$ is produced from the association of four D_2 molecules. These subsequent reactions occur at rates near or greater than that of the primary reaction. In contrast, $TaC_yD_2^+$ (y = 8, 10, 12, 14) do not readily react further. The variation in secondary reactivity between ions with odd and even numbers of carbons may be due to thermodynamic differences since neutral C_yD_2 are only known to be stable when y is even.²⁹ Therefore, C_yD_2 ligands with odd y may undergo facile hydrogenations to generate more stable ligands.

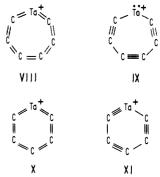

The rate constants for the primary reactions of TaC_{y}^{+} with D_{2} , normalized by the rate constant for TaC⁺, are plotted versus cluster size in Figure 2. Except for the nonreactivity of Ta⁺ and TaC₄⁺, the rate trends exhibited with D_{2} are also found in TaC_{y}^{+} reactions with CH₄ and C₂H₆. TaC⁺ reacts the fastest, suggesting that a relatively weak Ta⁺-C bond increases the reaction exothermicity. TaC_y⁺ (y = 5-14) with an even number of carbons react faster than neighboring ions with an odd number of carbons. This contrasts with the reactions of C_y⁺ with D₂¹⁶ and small hydrocarbons,¹⁷ where odd clusters react faster than even clusters. In general, experimental studies of C_y⁺ and C_yX⁺ (X = H, D, O, CN) suggest that, for odd electron series, odd y ions will be more reactive than even y ions, and vice versa, regardless of the neutral reactant.¹⁶⁻¹⁸ This is consistent with Huckel theory but is only

Figure 2. Semilog plot of the rate constants for the primary reactions of TaC_y^+ with D₂, normalized to the rate constant for y = 1, versus cluster size y. Arrows on the squares indicate that these values are upper limits (i.e., no reaction was observed).

applicable to linear molecules.^{11,18} TaC_y^+ , which are even electron species, follow this trend; however, it is not clear that a meaningful comparison can be made. The mechanism of TaC_y^+ reactions undoubtedly involves Ta d orbitals and is quite different from that of C_y^+ and C_yX^+ . Also, the existence of TaC_y^+ as linear molecules (I) is dubious, particularly for larger y. In fact, the TaC_y^+ odd-even rate trend may imply the presence of metallacycle structures (V). Metallacycles can be envisioned as consisting of cumulene- and polyacetylene-type resonance structures. For TaC_y^+ with even y (VIII and IX), a polyacetylene-type structure

(IX) results in two nonbonding electrons on Ta⁺, which may facilitate bonding at the metal center in the initial ion/molecule complex. TaC_y⁺ with odd y do not have resonance structures with nonbonding electrons (X and XI) and, as a consequence, may react more slowly.

A dramatic decrease in reaction rate with D_2 occurs between TaC_{10}^+ and TaC_{11}^+ . A sharp drop in the rate of reaction with D_2 exists between C_9^+ and C_{10}^+ and is believed to be the result of a change in structure from linear chains to monocyclic rings.¹⁶ The reason for the reactivity decrease between TaC_{10}^+ and TaC_{11}^+ is less clear. One possibility is that for TaC_y^+ ($y \ge 11$) Ta⁺ resides in the center of a planar monocyclic ring of carbons. Such a structure should lead to maximum bonding between Ta⁺ and C_y , resulting in coordinative saturation of Ta⁺ and a notable decrease in reactivity. Another explanation is that a change in the extent of charge delocalization occurs between TaC_{10}^+ and TaC_{11}^+ . For reactions with C_2H_2 and C_2H_4 , a large decrease in rate exists

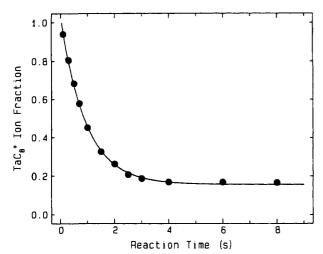


Figure 3. Reactant loss curve for the reaction of TaC_8^+ with D_2 . The curve represents a nonlinear least-squares fit of the data to the sum of an exponential and a constant. Error bars (2σ) are smaller than the point size. Approximately 84% of the TaC_8^+ reacts with D_2 .

between C_{10}^+ and C_{11}^+ and has been attributed to a decrease in the ionization potential¹⁷ (IP(C_{10}) = 9.1 eV³³ and IP(C_{11}) = 7.4 eV³³). Ta has an ionization potential of 7.4 eV; therefore, it is probable that extensive charge delocalization occurs for TaC₁₁⁺ compared to TaC₁₀⁺ and may be sufficient to account for a decrease in the rate of reaction.

Multiple Structural Isomers. TaC₈⁺ exhibits only partial reactivity with D2. While 84% of the ion population readily undergoes association reaction 1, the remaining 16% does not react. The reaction of TaC_8^+ with D_2 as a function of time is illustrated in Figure 3. Similar behavior is seen with CH_4 and C_2H_6 . The percentage of unreactive ions remained constant as a function of D_2 pressure (0.2-1.0) × 10⁻⁶ Torr) for times up to 8 s and was not affected by application of a pulsed pressure of nonreactive collision gas (xenon at $\sim 10^{-5}$ Torr) immediately following TaC₈⁺ formation and isolation. This suggests that the observed kinetic behavior is not the result of excited ions. Thus, the data lead to the conclusion that multiple structural isomers of TaC_8^+ exist. Reactions of C_{y}^{+} (y = 7-9) have also revealed reactive and nonreactive ion populations that have been attributed to linear and cyclic forms of C_{y}^{+} , respectively.¹⁶⁻¹⁸ As discussed below, while TaC₇⁺ and TaC₉⁺ both react to completion with D₂, these reactions exhibit kinetic behavior that may result from multiple structural isomers. Therefore, one interpretation of the TaC_8^+ data is that reactive ions have a linear C_8 ligand (I), while non-reactive ions have a cyclic C_8 ligand (IV or V). Other possibilities are that nonreactive TaC_8^+ contains two C₄ ligands (since TaC_4^+ is also unreactive with D_2) or exists as $Ta(C_2)_4^+$, with four C_2 ligands resulting in coordinative saturation of Ta⁺ (which has four valence electrons).

Reactions of TaC_y^+ (y = 5, 12-14) with D_2 have rates on the order of $10^{-11}-10^{-12}$ cm³/s, which are slow relative to the Langevin collision rate³² of 1.1×10^{-9} cm³/s. These reactions were not monitored to complete disappearance of reactants due to slow rates and low ion intensities. Therefore, while there is no evidence for multiple ion populations, the possibility cannot be ruled out.

TaC₇⁺ reacts slowly, but completely, with D₂. Figure 4 illustrates reactant and product ion relative abundances as a function of trapping time with 2.0×10^{-7} Torr of D₂ with (a) no buffer gas and (b) xenon added to 1.3×10^{-6} Torr. The solid lines are biexponential fits for the reactant ion intensity data. Between 0.5- and 2-s reaction time, data lie above the fitted line, giving the curves a "humped" appearance. This hump is pressure-dependent, becoming more pronounced with both increasing buffer gas and reactant pressures. The addition of a pulsed pressure of xenon (~10⁻⁵ Torr) prior to reaction with D₂ has a negligible effect, suggesting that this behavior is not the result of excited-state

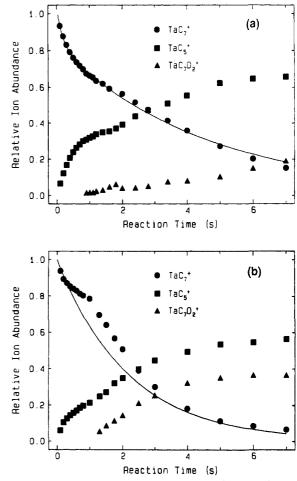


Figure 4. Reactant and product ion intensities as a function of trapping time for the reaction of TaC_7^+ with D_2 (2.0 × 10⁻⁷ Torr) with (a) no buffer gas and (b) xenon added to a total pressure of 1.3×10^{-6} Torr. The curve on the TaC_7^+ data represents a nonlinear least-squares fit of the data to the sum of two exponentials. Note the "hump" around reaction times of 1 s.

ions. Aside from the hump, the data at low pressures yield a reasonable fit to a single-exponential function, although fits of slightly better quality can be obtained via a biexponential function (i.e., two ion populations). The low-pressure data (Figure 4a) suggest that the major TaC_7^+ population accounts for ~85% of the ions and reacts at a rate that is roughly a factor of 5 slower than the reaction rate of the minor population. The relative rate constant in Table I is an average value calculated with single-exponential fits of data obtained at several pressures.

At short reaction times, TaC_7^+ and D_2 produce only TaC_5^+ (reaction 2). However, as the reaction time (and thus the number of collisions) increases, association reaction 1, producing $TaC_7D_2^+$, becomes an important process. As can be seen from Figure 4, and particularly Figure 4b, the appearance of the hump in TaC_7^+ abundance corresponds to the initial appearance of $TaC_7D_2^+$ as a product. The hump is actually an indication of a change in rate. With addition of xenon buffer gas at 1.3×10^{-6} Torr (Figure 4b) the hump peaks (and $TaC_7D_2^+$ formation begins) at 1 s. Under these conditions, reactions occur at a rate of $\sim 3 \times 10^{-11}$ cm³/s for times of 1 s or less and $\sim 9 \times 10^{-11}$ cm³/s after 1 s. The rate of TaC₅⁺ formation is not changing; instead this increased rate is entirely due to the emergence of the association pathway. At a total pressure of 1.3×10^{-6} Torr, the average time between collisions is 23 ms (as opposed to 148 ms at 2.0×10^{-7} Torr). Therefore, at 1.3×10^{-6} Torr the increased collision rate may lead to stabilization of $TaC_7D_2^+$, which at lower pressures would dissociate to primarily regenerate TaC_7^+ and produce minor amounts of TaC_5^+ .

The 1-s delay before formation of $TaC_7D_2^+$ may indicate that multiple collisions are necessary to generate the stabilized adduct.

⁽³³⁾ Bach, S. B. H.; Eyler, J. R. J. Chem. Phys. 1990, 92, 358-63.

Table III. Branching Ratios and Normalized Rate Constants for the Primary Reactions of TaC_y⁺ and CH₄

								cluster	size (y))					
products	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$T_{a}C_{y+1}H_{2}^{+} + H_{2}$	1.00	0.71	1.00	0.55	0.33		0.13	0.13	0.09		0.08				
$TaC_{y+1}H_2^+ + H_2$ $TaC_{y-1}H_2^+ + C_2H_2$ $Ta^+ + C_2H_4$				0.45	0.67	1.00	0.87	0.87	0.91	1.00	0.92	1.00	1.00	1.00	1.00
$Ta^+ + C_2H_4$		0.29													
normalized rate const (k_n)	1.004	1.66	0.86	0.28	0.19	0.056	0.48	0.25	1.116	0.12	0.65	0.0061	0.019	0.0073	0.073

"The absolute rate constant for the reaction of Ta⁺ was estimated to be 3.0×10^{-10} cm³/s. ^bSee text for explanation. ^cRate constant for the reactive fraction of TaC_{8}^{+} as discussed in the text.

Table IV. Branching Ratios for the Loss of ${}^{12}C{}^{13}CH_2$ and ${}^{12}C_2H_2$ in the Reactions of $Ta{}^{12}C_{\nu}^{+}$ and ${}^{13}CH_4$

						Cluster	size (y)					
products	3	4	5	6	7	8	9	10	11	12	13	14
$Ta^{12}C_{y-1}H_2^+ + {}^{12}C^{13}CH_2$ exptl stat ²	0.51 0.50	0.43 0.40	<i>b</i> 0.33	0.32 0.29	0.27 0.25	0.24 0.22	0.32 0.20	0.19 0.18	b 0.17	0.23 0.15	b 0.14	0.18 0.13
$Ta^{12}C_{y-2}^{13}CH_2^+ + {}^{12}C_2H_2$ exptl stat ^a	0.49 0.50	0.57 0.60	ь 0.67	0.68 0.71	0.73 0.75	0.76 0.78	0.68 0.80	0.81 0.82	<i>b</i> 0.83	0.77 0.85	<i>ь</i> 0.86	0.82 0.87

^aStatistical calculations of branching ratios assume that all carbons have an equal probability of being incorporated in the neutral C₂H₂. The statistical abundance of $Ta^{12}C_{y-1}H_2^+$ is 2/(y + 1) and of $Ta^{12}C_{y-2}^{-13}CH_2^+$ is (y - 1)/(y + 1). ^b For TaC_y^+ (y = 5, 11, 13), the ¹³CH₄ reaction is slow relative to the reaction with background water (which forms $Ta^{12}C_{y-1}H_2^+$), preventing the determination of accurate branching ratios for these ions.

It is also possible that two or more TaC_{7}^{+} isomers exist. One isomer, TaC_{7A}^+ , may undergo reaction 7 with $\sim 3\%$ of its collisions

$$TaC_{7A}^{+} + D_2 \rightarrow TaC_5^{+} + C_2D_2 \tag{7}$$

$$TaC_{7A \text{ or } 7B}^{+} + D_2 (+Xe) \rightarrow TaC_{7C}^{+} + D_2 (+Xe)$$
 (8)

$$TaC_{7C}^{+} + D_2 \rightarrow TaC_7D_2^{+}$$
(9)

with D₂ producing TaC₅⁺ ($k_{obsd}/k_{Langevin} = 0.03$), while a second isomer, TaC_{7C}⁺, forms a stable adduct via reaction 9. In this scenario, TaC_{7C}⁺ is not initially produced by DLV but results from structural rearrangement of either TaC_{7A}^+ or another isomer TaC_{7B}^{+} following collisions with D₂ or xenon (reaction 8). A similar mechanism has been proposed to explain nonlinear kinetic behavior, including a hump, exhibited during the reactions of C_7^+ with HCN.¹⁸ Reactions of C_7^+ with several small molecules have revealed two isomers: a linear species that reacts rapidly and a cyclic species that is slower to react.¹⁶⁻¹⁸ In addition, the reactions of TaC_7^+ with CH_4 and C_2H_6 suggest the existence of multiple structural isomers, as discussed later in this paper.

 TaC_9^+ and possibly TaC_{11}^+ also do not follow single-exponential first-order kinetics in their reactions with D_2 . These species are difficult to study since they are initially formed in low abundance by DLV. However, the data appear to decay biexponentially (and without a hump) and imply the existence of two ion populations with rate constants differing by less than a factor of 5. These ions undergo only association reaction 1.

Methane Reactions. Primary Reactions with ¹²CH₄. As shown in Table III, TaC_{v}^{+} (y = 0-14) react with CH₄ via primarily two pathways. Dehydrogenation, reaction 10, leads to an increase in

Ĺ

$$TaC_{y}^{+} + CH_{4} \xrightarrow{} TaC_{y+1}H_{2}^{+} + H_{2}$$
(10)

•
$$TaC_{\nu-1}H_2^+ + C_2H_2$$
 (11)

the number of carbon atoms attached to Ta and dominates for smaller TaC_{ν}^{+} ($\nu = 0-3$). Acetylene elimination, reaction 11, results in a smaller number of carbons in the cluster ion and becomes more abundant as y increases. This is the only process observed for $y \ge 11$. A third channel, generation of Ta⁺ by reaction 12, is only observed for TaC⁺ and sets an upper limit

$$TaC^+ + CH_4 \rightarrow Ta^+ + C_2H_4 \tag{12}$$

of $D(Ta^+-C) < 141 \text{ kcal/mol.}^{29}$ Therefore, based on the D₂ and CH_4 data, this bond energy is bracketed at 78 kcal/mol < D- $(Ta^+-C) < 141 \text{ kcal/mol.}$

The gas-phase reactions of Ta⁺ with alkanes, which have been studied in detail by Freiser and co-workers²¹ involve primarily cleavage of C-H bonds. This is consistent with numerous gas-

phase studies that have shown that metal ions early in the transition series and in the second and third rows preferentially activate C-H bonds (as opposed to C-C bonds).³⁴⁻³⁶ In the present work, the reactions of Ta^+ with CH_4 and C_2H_6 were reinvestigated to allow comparison of Ta^+ and TaC_y^+ data obtained under the same experimental conditions. The results of the current study are in agreement with the previous report. Ta^{+21} and Os^{+37} are the only ground-state atomic metal ions that are known to react exothermically with CH₄. Dehydrogenation is the lone process observed and indicates that $D(Ta^+-CH_2) > 111 \text{ kcal/mol.}^{29}$

While TaC_{y}^{+} reacts with CH_{4} by primarily two pathways, linear C_{y}^{+} (y = 3-9) undergo five different reactions with CH_{4} resulting in the elimination of H, H₂, CH₃, C₂H₂, and C₄H₂. Cyclic C_y⁺ (y = 10-19) do not react with CH₄.¹⁷ This difference in reactivity is further indication that Ta is actively involved in the TaC_{ν} reactions.

The reactivity of TaC_{v}^{+} (y = 7-9) with CH₄ is consistent with the D_2 results and provides additional evidence for multiple structural isomers. The remaining TaC_y^+ (y = 0-6, 10–14) react to yield linear pseudo-first-order decay plots, suggesting that only one structural isomer of these species is formed by DLV. Only 85% of the TaC_8^+ population reacts with CH_4 , and the percentage of reactive ions is independent of pressure. TaC_7^+ and TaC_9^+ react completely; however, reactant ion disappearance does not exhibit a single-exponential decay. The data also do not totally fit a biexponential equation (there is a small hump), but the best fits suggest that both TaC_7^+ and TaC_9^+ have two ion populations that react at rates differing by less than a factor of 5. The rate constants given in Table III represent average values. The TaC_7^+ data suggest that one structure dominates at 80-90%, while the TaC₉⁺ populations are roughly equal in abundance. Reactions of C_y⁺ (y = 7-9) with D₂,¹⁶ CH₄,¹⁷ and HCN¹⁸ have also revealed two structural isomers. The most reactive form (linear isomer VI) accounts for 32%, 70%, and 80% of the C₇⁺, C₈⁺, and C₉⁺ populations, respectively.¹⁸ Interestingly, TaC_y⁺ follow this same

(36) (a) Sunderlin, L.; Aristov, N.; Armentrout, P. B. J. Am. Chem. Soc.
1987, 109, 78-89. (b) Sunderlin, L. S.; Armentrout, P. B. J. Am. Chem. Soc.
1989, 111, 3845-55.
(37) Irikura, K. K.; Beauchamp, J. L. J. Am. Chem. Soc. 1989, 111,

75–85.

^{(34) (}a) Byrd, G. D.; Burnier, R. C.; Freiser, B. S. J. Am. Chem. Soc. 1982, 104, 3565-9. (b) Byrd, G. D.; Freiser, B. S. J. Am. Chem. Soc. 1982, 104, 5944-50. (c) Huang, Y.; Wise, M. B.; Jacobson, D. B.; Freiser, B. S. Organometallics 1987, 6, 346-54. (d) Jackson, T. C.; Carlin, T. J.; Freiser, B. S. J. Am. Chem. Soc. 1986, 108, 1120-6. (35) (a) Tolbert, M.; Beauchamp, J. L. J. Am. Chem. Soc. 1984, 106, 8117-22. (b) Tolbert, M. A.; Beauchamp, J. L. J. Am. Chem. Soc. 1986, 108, 7509-17. (c) Schilling, B. C.; Beauchamp, J. L. Organometallics 1988, 7, 194-9.

^{194-9.}

abundance trend, with the fastest reacting fractions accounting for ~15%, 84%, and $\approx 50\%$ of TaC₇⁺, TaC₈⁺, and TaC₉⁺, respectively.

The rate trends exhibited in TaC_{y}^{+} reactions with D_{2} are also seen in reactions with CH₄. TaC_{y}^{+} (y = 5, 11–14) react with CH₄ at rates on the order of 10^{-11} – 10^{-12} cm³/s. This is slow relative to the Langevin collision rate³² of 9.7 × 10⁻¹⁰ cm³/s. These slow reactions were not monitored to completion; however, in all cases the majority of the ions did react.

Primary Reactions with ${}^{13}CH_4$. In order to gain structural and mechanistic information, the reactions of $Ta^{12}C_y^{+}$ with ${}^{13}CH_4$ were studied. Experimental and statistical branching ratios for C_2H_2 elimination (reactions 13 and 14) are shown in Table IV. Sta-

$$Ta^{12}C_{y}^{+} + {}^{13}CH_{4} \xrightarrow{} Ta^{12}C_{y-1}H_{2}^{+} + {}^{12}C^{13}CH_{2}$$
 (13)

$$\rightarrow Ta^{12}C_{y-2}^{13}CH_2^+ + {}^{12}C_2H_2 \qquad (14)$$

tistical calculations assume that all carbons have an equal probability of being incorporated into the neutral C_2H_2 lost in the reaction. For y = 5, 11, and 13, the TaC_y^+ reactions with ¹³CH₄ are very slow relative to reaction 15 with background water

$$TaC_{y}^{+} + H_{2}O \rightarrow TaC_{y-1}H_{2}^{+} + CO$$
(15)

(present at ~10⁻⁹ Torr). As a result, the majority of Ta¹²C_{y-1}H₂⁺ (y = 5, 11, 13) was produced from reaction 15 and not the desired reaction with ¹³CH₄. Therefore, accurate branching ratios could not be determined for these ions. The other TaC_y⁺ underwent reaction 15 to varying degrees, but the contribution of this process to Ta¹²C_{y-1}H₂⁺ intensity either was negligible or could be subtracted out. This subtraction process involved Ta¹²C_{y-1}H₂⁺ produced from H₂O present with the vacuum system maintained at its base pressure of ~3 × 10⁻⁹ Torr. The Ta¹²C_{y-1}H₂⁺ intensity reported for several Ta¹²C_y⁺ that are slow to react with ¹³CH₄ (i.e., y = 9, 13, and 14) may be slightly high due to reactions with H₂O introduced into the vacuum system with ¹³CH₄.

While one might expect that the reactions of TaC_{p}^{+} with ${}^{13}CH_{4}$ would result in the preferential loss of ${}^{12}C{}^{13}CH_{2}$, it is evident from the data in Table III that this does *not* occur. In fact, the labeled carbon is almost *totally scrambled*; that is, each carbon in the reaction intermediate has an equal probability of being incorporated into the eliminated neutral. This indicates that the mechanism involves assimilation of the ${}^{13}C$ into the ${}^{12}C_{p}$ ligand(s). The first step is probably Ta⁺ insertion into a ${}^{13}C-H$ bond, yielding intermediate XII. This is followed by one (or more) α -hydrogen

migrations onto Ta⁺, with some production and elimination of H₂ (reaction 10). (Although α -hydride shifts are less common in the gas phase than β -hydride shifts, they have been observed in organotantalum solution chemistry.³⁸) The ¹³C is then incorporated into ¹²C_y, and the excess internal energy generated by the formation of this complex results in the loss of C₂H₂.

The observation of complete scrambling may indicate that all carbons are in equivalent environments in the intermediate preceding C_2H_2 loss. Therefore, metallocene intermediates (i.e., hydrogenated versions of IV) are strong candidates, although species with multiple C_2 ligands surrounding the metal (II) cannot be ruled out. For other structures, total carbon scrambling requires that either (1) ¹³C inserts randomly into any position in the carbon system and C_2H_2 elimination occurs at either a fixed position(s) or an indiscriminate one or (2) ¹³C inserts in a specific location(s) but carbon incorporation into C_2H_2 is random. Intermediates similar to metallacycle V meet either requirement. Intermediates involving singular attachment of Ta⁺ to a carbon chain (I or III) are less plausible because indiscriminate ¹³C insertion (option 1) should become difficult with increasing chain length (unless the chain is severely bent) and random C-C cleavage during C_2H_2 formation (option 2) is impossible because this would result in loss of various lengths of the carbon chain. Note that it is likely that the intermediate following ¹³C integration into C_y has the same structural type as the reactant TaC_y⁺. This is not mandatory, however, since in solution Ta-alkylidene complexes (linear structures) have been known to undergo cyclometalation during reactions with hydrocarbons.^{39,40}

Carbon scrambling is much more extensive with TaC_{y}^{+} and $^{13}CH_{4}$ than in the corresponding C_{y}^{+} reactions. For C_{y}^{+} (y = 4-9) the abundance of $^{12}C^{13}CH_{2}$ loss is roughly 2 times greater than would be expected if total carbon scrambling occurred (e.g., C_{6}^{+} eliminates 54% $^{12}C^{13}CH_{2}^{+}$ and 46% $^{12}C_{2}H_{2}$, while the statistical ratios of these products are 29% and 71%, respectively).⁴¹ The proposed mechanism for C_{y}^{+} reactions, which involves reaction at terminal carbene ends of linear chains (VI), $^{16-18}$ should not yield a high degree of carbon scrambling. The total scrambling seen for TaC_{y}^{+} is further evidence that these processes do not involve a similar mechanism.

The reactions of TaC_y^+ and ${}^{13}CH_4$ also indicate the presence of labile hydrogens; that is, hydrogens that do not remain attached to ${}^{13}C$. As additional confirmation, H/D exchange reactions were employed to indicate Ta⁺-H character. $TaC_yH_2^+$ (y = 2-5) readily undergo two sequential H/D exchanges with D₂. The rate of exchange decreases as the number of carbons increases, with no exchanges observed for $y \ge 6$. Assuming that D₂ initially inserts at the metal forming two Ta⁺-D bonds, these data signify that the TaC_yH₂⁺ hydrogens reside either on Ta⁺ or in equilibrium between Ta⁺ and carbon-containing ligands. The lack of H/D exchange for $y \ge 6$ does not necessarily imply a lack of labile hydrogens. Instead, D₂ may not oxidatively add to these species, possibly as a result of coordinative saturation.

Secondary Reactions. $TaC_{y}H_{2}^{+}$ (y = 1-6) produced from the reactions of TaC_{y}^{+} and CH_{4} readily react with a second neutral molecule. Dehydrogenation, reaction 16, is the only process observed and occurs at rates on the order of $10^{-10}-10^{-11}$ cm³/s.

$$TaC_{\nu}H_{2}^{+} + CH_{4} \rightarrow TaC_{\nu+1}H_{4}^{+} + H_{2}$$
(16)

These processes are independent of the TaC_y⁺ primary reactant; for example, TaC₂H₂⁺ produced from TaC⁺ (by loss of H₂) and from TaC₃⁺ (by loss of C₂H₂) react in an identical manner. Larger TaC_yH₂⁺ (y = 7-13) do not react with CH₄. Aside from adduct formation for y = 9, 11, and 13, these ions also do not react (or H/D exchange) with D₂, while TaC_y⁺ (y = 7-13) react with both D₂ and CH₄. This may indicate that the hydrogens of TaC_yH₂⁺ occupy coordination sites on Ta⁺ and block any further oxidative addition processes. It is also possible, although less likely, that hydrogenation of C_y results in a more dramatic change in structure, leading to multiple carbon ligands that hinder subsequent oxidative addition.

The reaction of $TaC_2H_2^+$ with CH_4 is 1 order of magnitude slower than the other $TaC_yH_2^+$ reactions. The product ion, $TaC_3H_4^+$, does not react further with CH_4 . Upon collisional activation, $TaC_3H_4^+$ eliminates predominantly H_2 at low energies (reaction 17) and C_2H_2 at higher energies (reaction 18). Since

$$TaC_{3}H_{4}^{+} \uparrow TaC_{3}H_{2}^{+} + H_{2}$$
⁽¹⁷⁾

$$\Box TaCH_2^+ + C_2H_2 (18)$$

 $TaCH_2^+$ and $TaC_2H_2^+$ both dissociate to produce primarily Ta^+ , with no H_2 elimination, the facile loss of H_2 from $TaC_3H_4^+$

^{(38) (}a) van Asselt, A.; Burger, B. J.; Gibson, V. C.; Bercaw, J. E. J. Am. Chem. Soc. 1986, 108, 5347-9. (b) Chamberlain, L. R.; Rothwell, I. P. J. Chem. Soc., Dalton Trans. 1987, 163-7. (c) Malatesta, V.; Ingold, K. U.; Schrock, R. R. J. Organomet. Chem. 1978, 152, C53-6.

^{(39) (}a) Steffey, B. D.; Chamberlain, L. R.; Chesnut, R. W.; Chebi, D. E.; Fanwick, P. E.; Rothwell, I. P. Organometallics 1989, 8, 1419-23. (b) Chesnut, R. W.; Steffey, B. D.; Rothwell, I. P.; Huffman, J. C. Polyhedron 1988, 7, 753-6.

 ^{(40) (}a) Fellmann, J. D.; Schrock, R. R.; Rupprecht, G. A. J. Am. Chem. Soc. 1981, 103, 5752-8. (b) McLain, S. J.; Schrock, R. R. J. Am. Chem. Soc.
 1978, 100, 1315-7.

⁽⁴¹⁾ McElvany, S. W. Unpublished results.

Table V. Branching Ratios and Normalized Rate Constants for the Primary Reactions of TaCy⁺ and C₂H₄

	cluster size (y)														
products	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$TaC_{y+2}H_{2}^{+} + H_{2}$	1.00	0.24	0.60	0.28	0.72	0.18	0.36		0.68	0.11	0.40		0.63	0.26	0.26
$TaC_{1}H^{+} + 3H$		0.11													
$T_{a}C_{1}^{+} + 2H_{2}$		0.22													
$T_a C_{\nu} H_{2}^{+} + C_{2} H_{2}$		0.27	0.40	0.72	0.28	0.82	0.64	1.00	0.32	0.89	0.60	1.00	0.37	0.74	0.74
TaCH+ + C,H,		0.05													
$Ta^+ + C_1 H_4$		0.11													
normalized rate const (k_p)	1.00ª	1.19	0.93	0.80	0.74	0.55	0.82	0.74	0.58	0.67	0.83	0.47	0.45	0.079 ^b	0.26 ^b

Table VI. Branching Ratios for the Loss of ${}^{13}C_2D_2$, ${}^{12}C^{13}CD_2$, and ${}^{12}C_2D_2$ in the Reactions of $Ta^{13}C_y^+$ and ${}^{12}C_2D_4$

	cluster size (y)													
products	2	3	4	5	6	7	8	9	10	11	12			
$Ta^{12}C_2^{13}C_{\nu-2}D_2^+ + {}^{13}C_2D_2$														
exptl	0.17	0.24	0.25	0.58	0.52	0.49	0.51	0.49	0.64	0.61	0.71			
state	0.17	0.30	0.40	0.48	0.53	0.58	0.62	0.65	0.68	0.71	0.73			
$Ta^{12}C_1^{13}C_{y-1}D_2^+ + {}^{12}C^{13}CD_2$														
exptl	0.59	0.69	0.64	0.33	0.37	0.45	0.39	0.42	0.30	0.34	0.28			
stata	0.66	0.60	0.53	0.48	0.43	0.39	0.36	0.33	0.30	0.28	0.26			
$Ta^{13}C_{y}D_{2}^{+} + {}^{12}C_{2}D_{2}$														
exptl	0.24	0.07	0.12	0.09	0.11	0.06	0.10	0.09	0.06	0.05	0.00			
stata	0.17	0.10	0.07	0.05	0.04	0.03	0.02	0.02	0.02	0.01	0.01			

^aStatistical calculations of branching ratios assume that all carbons have an equal probability of being incorporated in the neutral C_2D_2 . The statistical abundance of $Ta^{12}C_2^{13}C_{y-2}D_2^+$ is [y(y-1)]/[(y+1)(y+2)], of $Ta^{12}C_1^{13}C_{y-1}D_2^+$ is (4y)/[(y+1)(y+2)], and of $Ta^{13}C_nD_2^+$ is 2/[(y+1)(y+2)].

suggests that ligand coupling has occurred, yielding a $Ta^+-(C_3H_4)$ structure rather than a carbene-olefin complex, $(CH_2)-Ta^+-(C_2H_2)$.

Several product ions from reaction 16 also dehydrogenate CH₄. For example, Ta⁺ initiates four sequential reactions with CH₄. Low-energy CID of the product ions TaC₂H₄⁺, TaC₃H₆⁺, and TaC₄H₈⁺ results in elimination of H₂ and small hydrocarbons but does not yield conclusive structural information.²¹ TaC₂⁺ also dehydrogenates four CH₄ molecules, producing TaC_{n+2}H_{2n}⁺ (n = 1-4). The tertiary product, TaC₄H₄⁺, dissociates by elimination of H₂ at lower CID energies, C₂H₂ at moderate energies, and C₄H₄ at higher energies. Interestingly, the C₂H₂ loss pathway exhibited near-statistical carbon scrambling during CID studies of Ta¹²C₂¹³C₂H₄⁺. TaC₄H₂⁺, the TaC₃⁺ and CH₄ product ion, dehydrogenates CH₄ to produce TaC₅H₄⁺, which then reacts slowly by association to yield TaC₆H₈⁺. This is the only adduct formation seen for the CH₄ reactions. Surprisingly, dehydrogenates tructure) is not observed.

Ethene Reactions. Primary Reactions. Primary products, branching ratios, and rate constants for the reactions of TaC_{y}^{+} with $C_{2}H_{4}$ are listed in Table V. Two pathways dominate these reactions. Elimination of H_{2} (reaction 19) results in an increase in the number of carbons attached to the metal, while acetylene elimination (reaction 20) does not change the number of carbons.

$$TaC_{y}^{+} + C_{2}H_{4} \xrightarrow{} TaC_{y+2}H_{2}^{+} + H_{2}$$
 (19)

Two superimposed trends are evident from the data: C_2H_2 elimination becomes more prevalent as the number of carbons increases, and TaC_y^+ with even number of carbons preferentially lose H_2 . The reactivity of TaC^+ is again unusual and involves additional processes resulting in 3 H, 2 H₂, C_2H_3 , and C_3H_4 elimination. The exothermic loss of 2 H₂ to generate TaC_3^+ indicates that the Ta^+-C_3 bond is at least 16 kcal/mol stronger than the Ta^+-C bond.²⁹ This is consistent with the D₂ reaction data and also with the DLV production of TaC^+ in much lower abundance than TaC_3^+ . The rates of the TaC_y^+ (y = 0-12) reactions with C_2H_4 range

The rates of the TaC_y⁺ (y = 0-12) reactions with C₂H₄ range from 7 to 13 × 10⁻¹⁰ cm³/s, suggesting that every first or second collision results in reaction. For y = 0-2, the measured rates are slightly higher than the collision rate³² of 9.8 × 10⁻¹⁰ cm³/s, indicating that the absolute rates obtained from our experiments are somewhat high. However, as noted previously, differences in relative rate constants should be significant since data were obtained under similar conditions. The fast reactions of TaC_{y}^{+} (y = 0-12) with $C_{2}H_{4}$ result in relative rates that vary by less than a factor of 3 and that do not exhibit the pronounced trends seen with D_{2} and CH_{4} . These ion populations react completely with $C_{2}H_{4}$, showing only pseudo-first-order kinetic behavior. This indicates that the two structural isomers of TaC_{y}^{+} (y = 7-9) have similar reactivities with $C_{2}H_{4}$. The linear and cyclic forms of C_{y}^{+} (y = 7-9) also cannot be distinguished by reaction with $C_{2}H_{4}$.¹⁷ TaC_{13}^{+} , and to a lesser extent TaC_{14}^{+} , reacts more slowly than the other cluster ions. These processes were not monitored to completion, but in both instances greater than 70% reaction was observed.

The reactions of TaC_y^+ and C_2H_4 are dramatically different from those of the corresponding C_y^+ . C_y^+ (y = 3-14) react with C_2H_4 via nine pathways, including adduct formation, charge exchange (formation of neutral C_y), and elimination of H, H₂, CH_3 , C_2H_2 , C_3H_3 , C_4H_2 , and $C_{y-1}H$. The proposed mechanism involves insertion of the carbene ends of linear C_y^+ into both the C—H and C=C bonds of C_2H_4 .¹⁷ Again, differences in TaC_y^+ and C_y^+ reactivities indicate active participation of Ta⁺ in the TaC_y⁺ reactions.

¹²C₂D₄ Reactions with Ta¹³C_y⁺. To aid in the elucidation of mechanisms, the reactions of Ta¹³C_y⁺ with ¹²C₂D₄ were investigated. These experiments were performed with ¹²C₂D₄ rather than ¹²C₂H₄ to avoid nominal mass overlap between Ta¹³C_y⁺ and Ta¹²C₂¹³C_{y-1}H₂⁺. DLV on a Ta/¹³C (amorphous) samples did not yield sufficient Ta¹³C⁺ for further study, while low ion intensities hindered work with Ta¹³C₁₃⁺ and Ta¹³C₁₄⁺. Experimental and statistical branching ratios for C₂D₂ elimination (reactions 21–23) are given in Table VI. Statistical calculations do not

$$Ta^{13}C_{y}^{+} + {}^{12}C_{2}D_{4} \uparrow^{*} Ta^{12}C_{2}{}^{13}C_{y-2}D_{2}^{+} + {}^{13}C_{2}D_{2}$$
(21)

$$\rightarrow Ta^{12}C^{13}C_{y-1}D_2^+ + {}^{12}C^{13}CD_2 \qquad (22)$$

$$Ta^{13}C_{y}D_{2}^{+} + {}^{12}C_{2}D_{2}$$
 (23)

consider that the two ¹²C's may reside in adjacent sites in the reaction intermediate. While the degree of carbon scrambling is not as great as that seen with ¹³CH₄, it is still extensive and suggests that the ¹²C's from ¹²C₂D₄ are being incorporated into the ¹³C_y ligand(s) prior to C₂D₂ elimination. Also, the enhanced ¹²C₂D₂ elimination over statistical expectations implies that a minor

amount of neutral elimination occurs prior to incorporation of ${}^{12}C_2$ into ${}^{13}C_{\nu}$.

A goal of the Ta¹³C_{ν}⁺ and ¹²C₂D₄ study was to gain structural information. With $Ta^{13}C_7^+$ as an example, insertion of intact ${}^{12}C_2$ into the cyclic ¹³C₇ ligand of a metallocene (IV) followed by elimination of any two adjacent carbon atoms would theoretically result in the distribution of ${}^{13}C_2D_2$, ${}^{12}C{}^{13}CD_2$, and ${}^{12}C_2D_2$ elimination being 67%, 22%, and 11%, respectively. Insertion of an intact ${}^{12}C_2$ next to Ta⁺ in a metallacycle (V) or linear ${}^{13}C_7$ chain (I) with elimination of any adjacent C_2 would result in a distribution of 75%, 12.5%, and 12.5%, while insertion at any site in these structures yields 66%, 22%, and 12%. Unfortunately, the experimental product distributions of 49%, 45%, and 6% cannot be explained with these simple models. In fact, the experimental data most closely match the statistical distribution from complete carbon scrambling (58%, 39%, 3%), although a greater tendency toward ¹²C elimination is seen experimentally. The agreement between the experimental data and the statistical distribution suggests that the two $^{12}\mathrm{C's}$ from $^{12}\mathrm{C_2D_4}$ may not be adjacent in the intermediate. Therefore, the reaction may involve some initial insertion of Ta⁺ into the C=C bond. However, the abundance of the dehydrogenation pathway (reaction 20) illustrates that Ta⁺ insertion into the vinylic C-H bond is the major process. In addition, a strong preference for C-H insertion over C-C insertion has been observed for the reactions of Ta⁺ with hydrocarbons.²¹

Secondary Reactions. Activation of C-H bonds governs the reactions of $TaC_mH_n^+$ with C_2H_4 . Typically, smaller clusters increase in size by retaining C_2H_2 (reaction 24), while larger clusters retain H_2 (reaction 25). Double dehydrogenation (re-

$$TaC_m H_n^+ + C_2 H_4 \rightarrow TaC_{m+2} H_{n+2}^+ + H_2$$
 (24)

$$\rightarrow \mathrm{TaC}_{m}\mathrm{H}_{n+2}^{+} + \mathrm{C}_{2}\mathrm{H}_{2} \tag{25}$$

$$\Box TaC_{m+2}H_n^+ + 2H_2$$
 (26)

action 26) occurs to a surprising degree and is more pronounced as the length of the carbon chain increases. The extent of these secondary reactions is truly extraordinary and appears to involve coupling of hydrocarbon ligands on the metal. Ligand coupling is also observed in the gas-phase reactions of Nb⁺ with hydrocarbons²¹ and in solution-phase organotantalum chemistry, where polymerization of unsaturated hydrocarbons is proposed to proceed through insertion,⁴² metathesis,⁴³ and cyclometalation⁴⁰ mechanisms.

Ta⁺ sequentially reacts with 10 C₂H₄ molecules. This is the most extensive reactivity ever observed in gas-phase metal ion chemistry, eclipsing the reaction of Nb⁺ with six C₂H₄ molecules.⁴⁴ The primary product from Ta⁺ and C₂H₄, TaC₂H₂⁺, undergoes secondary reactions 27 and 28 at 20% and 80%, respectively.

$$TaC_2H_2^+ + C_2H_4 + TaC_4H_2^+ + 2H_2$$
 (27)

$$\Box TaC_4H_4^+ + H_2 (28)$$

Further reactions were not studied in detail with ion isolation techniques; therefore, accurate branching ratios and rate constants were not obtained for each step. However, elimination of a single H_2 controls the subsequent reactions with four additional C_2H_4 molecules, resulting in the sequential formation of $TaC_nH_{n-2}^+$ and $TaC_nH_n^+$ (n = 6, 8, 10, 12). $TaC_nH_n^+$ also eliminate a minor amount of 2 H₂, but 2 H₂ loss does not occur for the more unsaturated $TaC_nH_{n-2}^+$. These processes proceed readily, at rates on the order of 10^{-10} cm³/s, with $TaC_nH_{n-2}^+$ reacting faster than

the corresponding $TaC_nH_n^+$. Following the formation of $TaC_{12}H_{10}^+$ and $TaC_{12}H_{12}^+$, the rates decrease by roughly 1 order of magnitude. The next set of reactions in the sequence involve 2 H₂ elimination, forming $TaC_{14}H_{10}^+$ and $TaC_{14}H_{12}^+$. The rate of reaction again slows significantly, but processes involving H₂ and 2 H₂ loss continue and terminate in the formation of $TaC_{20}H_n^+$ (n = 14, 16, 18). No additional reactions were observed, even with the introduction of relatively high pressures ($\sim 10^{-3}$ Torr) of C_2H_4 via the pulsed valve.

 $TaC_2H_2^+$ produced from TaC_2^+ and C_2H_4 reacts in a manner identical with $TaC_2H_2^+$ formed by Ta^+ reaction with C_2H_4 . The major TaC_2^+ primary product, $TaC_4H_2^+$, reacts further with the neutral by H_2 elimination, yielding $TaC_6H_4^+$. The sequence then continues in the manner outlined above for Ta^+ , again concluding with the generation of $TaC_{20}H_n^+$. In addition, CID studies of several $TaC_mH_n^+$ produced from reactions initiated by both Ta^+ and TaC_2^+ suggest that the product ion structures are independent of the initial TaC_p^+ reactant.

Collision-induced dissociation of $TaC_mH_n^+$ typically yields a large number of products and involves elimination of H₂ and small hydrocarbons containing even numbers of carbons. For $TaC_{14}H_{12}^+$, $TaC_{12}H_{12}^+$, $TaC_{12}H_{10}^+$, and $TaC_{10}H_8^+$, the major low-energy processes are H₂ or C₂H₂ loss, with elimination of 2 H₂ and C₂H₄ (or C₂H₂ and H₂) resulting at moderately higher energies. As the CID energy is increased, a series of lower mass ions form: $TaC_8H_6^+$, $TaC_6H_4^+$, $TaC_4H_2^+$, $TaC_2H_2^+$, Ta^+ . These same ions are produced regardless of the dissociating $TaC_mH_n^+$, indicating that dissociation is governed by the stability of the product ions rather than the neutrals.

 $TaC_6H_6^+$ formed by reactions of Ta^+ (or TaC_2^+) with C_2H_4 readily dissociates under low-energy conditions. $TaC_6H_6^+$, which is produced from cyclohexane and presumably has a Ta^+ -benzene structure, yields the same CID products but in different relative abundances. Reactions 29-33 show these products at 15-eV

$$\begin{array}{cccc} & & & & C_2H_4 & c-C_6H_{12} \\ TaC_6H_6^+ & & TaC_6H_4^+ + H_2 & 37\% & 63\% & (29) \\ & & TaC_6H_2^+ + 2H_2 & 24 & 2 & (30) \end{array}$$

$$\rightarrow T_{a}C_{4}H_{2}^{+} + C_{2}H_{4} \quad 13 \qquad 17 \qquad (31)$$

$$\rightarrow T_{a}C_{3}H_{3}^{+} + C_{4}H_{4} \quad 10 \qquad 4 \qquad (32)$$

$$rathered = Ta^{+} + C_6H_6$$
 16 14 (33)

laboratory energy with xenon collision gas. At higher CID energies, hydrocarbon elimination (reactions 31-33) increases relative to dehydrogenation (reactions 29 and 30). $TaC_6H_6^+$ from C_2H_4 undergoes considerably more 2 H_2 loss at all energies studied than $TaC_6H_6^+$ from cyclohexane. In fact, with cyclohexane as the precursor, reaction 30 never accounts for greater than 3% of the CID products. Ions produced from different pathways, but having identical structures, can exhibit variations in their dissociation patterns as a result of differences in initial internal energies. However, for $TaC_6H_6^+$ generated from C_2H_4 and cyclohexane the discord in the CID data is sufficient to suggest that these ions do not have the same structure. A linear hydrocarbon chain should dehydrogenate more readily than a benzene ring; therefore, benzene formation (e.g., dehydrocyclization) is probably not occurring in the C_2H_4 reactions. In contrast, NbC₆H₆⁺ produced from C_2H_4 (in a reaction sequence analogous to that of Ta⁺) and from cyclohexane dissociates to generate the same CID fragments in roughly the same intensities, leading to the conclusion that Nb⁺ reacts sequentially with C_2H_4 to yield Nb⁺-benzene.²¹

 $TaC_{12}\dot{H}_{12}^+$ produced by reactions of Ta⁺ with C₂H₄ and with cyclohexane and cyclohexene (both probably yielding Ta⁺-dibenzene) dissociate via 10 pathways. Again, variations in relative CID product abundances are seen and may imply different $TaC_{12}H_{12}^+$ structures. This cannot be said with certainty, because these differences are minor and may again result from variations in initial internal energy of the dissociating ions. Interestingly, $TaC_{12}H_{12}^+$ does not dissociate to form $TaC_6H_6^+$. Also, $TaC_6H_6^+$ was not produced as a CID product from any $TaC_mH_n^+$ species studied. In contrast, NbC₈H₈⁺ and NbC₁₂H₁₂⁺ (formed from Nb⁺)

^{(42) (}a) Wallace, K. C.; Liu, A. H.; Davis, W. M.; Schrock, R. R. Organometallics 1989, 8, 644-54. (b) Wallace, K. C.; Schrock, R. R. Macromolecules 1987, 20, 448-50.

<sup>molecules 1961, 20, 448-50.
(43) (a) Wallace, K. C.; Liu, A. H.; Dewan, J. C.; Schrock, R. R. J. Am. Chem. Soc. 1988, 110, 4964-77. (b) Wood, C. D.; McLain, S. J.; Schrock, R. R. J. Am. Chem. Soc. 1979, 101, 3210-22. (c) Rocklage, S. M.; Fellmann, J. D.; Rupprecht, G. A.; Messerle, L. W.; Schrock, R. R. J. Am. Chem. Soc. 1981, 103, 1440-7.
(4A) The provider of Nutrient Content of Supervision of Supervision of Supervision of Supervision.</sup>

⁽⁴⁴⁾ The reactions of Nb⁺ and C₂H₄ reported in ref 21 were performed at static pressures of $\sim 10^{-7}$ Torr. It is possible that Nb⁺ might also react with greater than six C₂H₄ molecules at the higher pressures (both static and pulsed) employed in the present TaC_y⁺ study.

Table VII. Branching Ratios and Normalized Rate Constants for the Primary Reactions of TaCy⁺ and C₂H₆

	cluster size (y)														
products	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$TaC_{y+2}H_4^+ + H_2$	0.17					0.14					0.39		0.21	NR ^c	
$TaC_{y+2}H_{2}^{+} + 2H_{2}$	0.80	0.57	0.64	0.18	0.26	0.35			0.82				0.56		
$TaC_{p+1}H^+ + CH_4$	0.03	0.06													
$TaC_{\mu}H_{4}^{+} + C_{2}H_{2}$						0.16				0.49	0.21	0.27			
$TaC_{\mu}H_{2}^{+} + C_{2}H_{4}^{-}$		0.30	0.36	0.82	0.74	0.35	1.00	1.00	0.18	0.51	0.40	0.73	0.24		1.00
$Ta^+ + C_1 H_6$		0.07													
normalized rate const (k_p)	1.00ª	0.91	0.62	0.53	0.63	0.20	0.64	0.46	0.64 ^b	0.28	0.73	0.12	0.19	<0.001	0.10 ^d

^a The absolute rate constant for the reaction of Ta⁺ was estimated to be 8.8×10^{-10} cm³/s. ^bRate constant for the reactive fraction of TaC₈⁺ as discussed in the text. ^cNR indicates that this ion did not undergo any reactions. ^dSee the text for explanation.

and C_2H_4) yield NbC₆H₆⁺ as a major dissociation product.²¹ NbC₆H₆⁺ is also a major CID product for NbC₁₂H₁₂⁺ produced from cyclohexane, but differences in the CID product intensities for NbC₁₂H₁₂⁺ from the two precursors prevent unambiguous structural assignment. However, ligand coupling to avoid coordinative saturation and dehydrocyclization producing benzene ligands are believed to be prominent processes in the Nb⁺/ethene chemistry.²¹ While ligand coupling appears to be prevalent in the Ta⁺ reactions, there is currently no evidence for dehydrocyclization. In addition, M⁺-benzene bonds are generally strong relative to other M⁺-alkene bonds.⁴⁵ The apparent lack of Ta⁺-benzene formation may indicate that this is not the case for Ta.

In addition to Ta^+ and TaC_2^+ , the other TaC_y^+ also undergo complex series of reactions with ethene. The TaC⁺ secondary reactions were difficult to study due to the low TaC⁺ intensity and the large number (six) of primary products, but subsequent products up to $TaC_9H_8^+$ were observed. The TaC_3^+ primary products, $TaC_3H_2^+$ and $TaC_5H_2^+$, react predominantly by loss of H₂ and 2 H₂ to form two series of ions, $TaC_nH_{n-3}^+$ and $TaC_nH_{n-1}^+$ (n = 5, 7, 9, 11). Both n = 11 ions then produce $TaC_{13}H_{10}^+$. Following the trend of the Ta⁺ reactions, the more unsaturated series, $TaC_{n}H_{n-3}^{++}$, reacts the fastest. The TaC_{4}^{++} products, $TaC_{4}H_{2}^{++}$ and $TaC_{6}H_{2}^{++}$, form the secondary products $TaC_6H_4^+$ and $TaC_8H_4^+$. Interestingly, although $TaC_8H_4^+$ is relatively unsaturated, it undergoes only a very slow reaction to yield $TaC_{10}H_6^+$. In contrast, $TaC_6H_4^+$ readily continues a sequence of H_2 eliminations that concludes in the production of $TaC_{14}H_{12}^+$. TaC_5^+ initiates a complicated series of reactions involving product ions with both odd and even numbers of hydrogens. These reactions terminate in the formation of $TaC_{13}H_n$ (n = 8-12), with n = 8 dominating. The primary products from TaC_6^+ , $TaC_6H_2^+$ and $TaC_8H_2^+$, react by both C_2H_2 and H_2 elimination and eventually produce $TaC_{12}H_6^+$. (Again, $TaC_8H_4^+$ is slow to react.) $TaC_7H_2^+$, from TaC_7^+ , produces $TaC_7H_4^+$, $TaC_9H_4^+$, $TaC_9H_6^+$, and $TaC_{11}H_6^+$. Elimination of C_2H_2 to form $TaC_{y}H_{4}^{+}$ is the only process observed for $TaC_{y}H_{2}^{+}$ (y = 8-13), which are originally produced from the corresponding TaC_{ν}^{+} . An interesting aspect of the secondary reactions is that the rate of reaction drops considerably after the formation of $TaC_{13}H_n^+$ or $TaC_{14}H_n^+$ species. TaC_y^+ formation by DLV also drops off considerably between y = 14 and 15. One possibility is that Ta forms several bonds with the hydrocarbon ligand(s) and coordinative saturation may hinder ligands with more than a total of 14 carbons

Ethane Reactions. Primary Reactions. As seen in Table VII, the reactions of TaC_{y}^{+} and $C_{2}H_{6}$ involve six different processes. Two major pathways, elimination of 2 H₂ (reaction 34) and $C_{2}H_{4}$ (reaction 35), are observed. Interestingly, these reactions lead

$$TaC_{y}^{+} + C_{2}H_{6} + TaC_{y+2}H_{2}^{+} + 2H_{2}$$
 (34)

$$\Box TaC_{y}H_{2}^{+} + C_{2}H_{4}$$
 (35)

to the same products that are produced from TaC_{ν}^{+} reactions with C_2H_4 (via H_2 and C_2H_2 loss). $TaC_{\nu+2}H_2^{+}$ production from C_2H_6 (reaction 34) requires 32 kcal/mol more energy than its production

from C_2H_4 (reaction 19). In contrast, formation of $TaC_yH_2^+$ from C_2H_6 (reaction 35) needs 9 kcal/mol less energy than the corresponding C_2H_4 reaction (reaction 20).²⁹ Again, dehydrogenation to increase the carbon to Ta ratio becomes less important with increasing y but is more pronounced for even y. Loss of H_2 and C_2H_2 from ethane is most prevalent at larger $y (y \ge 9)$. Ta⁺ and TaC⁺ eliminate a minor amount of CH₄, probably as a result of oxidative addition of the metal into the C-C bond.

The TaC_y⁺ (y = 0-4, 6-10) reactions with C₂H₆ are less than a factor of 2 slower than the corresponding C₂H₄ reactions. For y = 5 and 11-14, the C₂H₆ reactions are considerably slower than those of C₂H₄. Similar behavior is found with D₂ and CH₄. Only 84% of the TaC₈⁺ population reacts with C₂H₆, providing additional evidence for two TaC₈⁺ structures. TaC₁₃⁺, which reacts very slowly with C₂H₄, does not react with C₂H₆. The TaC₁₄⁺ reaction was not monitored to completion, but at least 70% of the ions react. All other TaC_y⁺ react completely with C₂H₆ and exhibit only pseudo-first-order kinetic behavior.

Secondary Reactions. The primary product ions formed from TaC_y^+ and C_2H_6 react extensively with C_2H_6 . These reactions were not studied in detail due to the extreme complexity of the spectra. In general, elimination of H_2 and 2 H_2 is the major secondary processes, with H_2 loss becoming more important as the length of the carbon chain increases. C_2H_2 and C_2H_4 eliminations also occur, as well as minor amounts of CH_4 loss. The secondary reactivity of the $TaC_mH_n^+$ product ions again decreases as the number of carbons increases, and no ions larger than m = 14 are observed.

Conclusions

Tantalum carbide cluster ions, TaC_y^+ (y = 0-14), exhibit a rich chemistry in their gas-phase reactions with D_2 , CH_4 , C_2H_4 , and C_2H_6 . These processes are markedly different from those of the corresponding carbon clusters, $C_y^{+,16.17}$ indicating that Ta is playing an active role in the TaC_y^+ reactions. The reaction mechanisms are believed to involve oxidative addition at Ta⁺, followed by ligand rearrangement and elimination of neutrals or radicals. The high degree of dehydrogenation and ligand coupling seen in gas-phase Ta⁺ chemistry²¹ is also found in the TaC_y^+ reactions with hydrocarbons. In addition, the TaC_y^+ reactions with hydrocarbons mimic Ta⁺ chemistry by undergoing extensive secondary reactions. For example, Ta⁺ and TaC₂⁺ react sequentially with ten and nine C_2H_4 molecules, respectively, leading to the formation of large ions such as $TaC_{20}H_{18}^+$.

Experiments with isotopically labeled precursors were performed to obtain structural and mechanistic information. Surprisingly, total scrambling of the labeled carbon occurred during TaC_{y}^{+} reactions with ¹³CH₄. This indicates that the mechanism involves assimilation of the ¹³C into the ¹²C_y ligand(s) prior to neutral elimination. As additional confirmation, extensive carbon scrambling was also observed during $Ta^{13}C_{y}^{+}$ reactions with $C_{2}D_{4}$. Direct evidence for TaC_{y}^{+} structures was not obtained from

Direct evidence for TaC_{y}^{+} structures was not obtained from the reactivity studies. However, the observation of complete carbon scrambling in the ¹³CH₄ reactions suggests an intermediate with all carbons in equivalent environments (e.g., metallocene structures). Previous low-energy CID studies¹³ of TaC_{y}^{+} have also indicated the possibility of cyclic structures, particularly for $y \ge$ 10. In addition, the reactions of TaC_{y}^{+} (y = 7-9) with D₂ and CH₄ provide evidence for two structural isomers.

⁽⁴⁵⁾ Hettich, R. L.; Jackson, T. C.; Stanko, E. M.; Freiser, B. S. J. Am. Chem. Soc. 1986, 108, 5086-93.